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An influence of spin-orbit interaction on the tunneling between two two-dimensional electron layers is
considered. Particular attention is addressed to the relation between the contribution of Rashba and Dresselhaus
types. It is shown that without scattering of the electrons, the tunneling conductance can either exhibit reso-
nances at certain voltage values or be substantially suppressed over the whole voltage range. The dependence
of the conductance on voltage turns out to be very sensitive to the relation between Rashba and Dresselhaus
contributions even in the absence of magnetic field. The elastic scattering broadens the resonances in the first
case and restores the conductance to a larger magnitude in the latter one. These effects open the possibility to
determine the parameters of spin-orbit interaction and electron scattering time in tunneling experiments with no
necessity of external magnetic field.
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I. INTRODUCTION

Spin-orbit interaction �SOI� plays an important role in the
widely studied spin-related effects and spintronic devices. In
the latter, it can be either directly utilized to create spatial
separation of the spin-polarized charge carriers or indirectly
influence the device performance through spin-decoherence
time. In two-dimensional �2D� structures, two kinds of SOI
are known to be of the most importance, namely, Rashba and
Dresselhaus mechanisms. The first one, characterized by pa-
rameter �, originates from the structure inversion asymme-
try, while the second one characterized by � is due to the
bulk inversion asymmetry. Most importantly, both of the
contributions reveal themselves when the values of � and �
are comparable. In this case, a number of interesting effects
occur: The electron energy spectrum becomes strongly
anisotropic,1 the electron spin relaxation rate becomes de-
pendent on the spin orientation in the plane of the quantum
well,2 a magnetic breakdown should be observed in the
Shubnikov–de Haas effect.3 The energy spectra splitting due
to SOI can be observed in rather well-developed experiments
as that based on Shubnikov–de Haas effect. However, these
experiments can hardly tell about the partial contributions of
the two mechanisms, leaving the determination of the rela-
tion between � and � to be a more challenging task. At the
same time, in some important cases spin relaxation time �s

and spin polarization strongly depend on the �
� ratio. In this

paper, we consider the tunneling between 2D electron layers,
which turns out to be sensitive to the relation between
Rashba and Dresselhaus contributions. The specific feature
of the tunneling in the system under consideration is that the
energy and in-plane momentum conservation put tight re-
strictions on the tunneling. Without SOI, the tunneling con-
ductance exhibits a delta-function-like maximum at zero bias
broadened by elastic scattering in the layers4 and fluctuations
of the layer width.5 Such a behavior was indeed observed in
a number of experiments.6–8 Spin-orbit interaction splits the
electron spectra into two subbands in each layer. Energy and
momentum conservation can be fulfilled for the tunneling
between opposite subbands of the layers at a finite voltage
corresponding to the subbands splitting. However, if the pa-

rameters of SOI are equal for the left and right layers, the
tunneling remains prohibited due to orthogonality of the ap-
propriate spinor eigenstates. In Ref. 9, it was pointed out that
this restriction can also be eliminated if Rashba parameters
are different for the two layers. A structure design was
proposed10 where exactly opposite values of the Rashba pa-
rameters result from the builtin electric field in the left layer
being opposite to that in the right layer. Because the SOI of
Rashba type is proportional to the electric field, this would
result in �R=−�L, where �L and �R are the Rashba param-
eters for the left and right layers, respectively. In this case,
the peak of the conductance is expected at the voltage U0
corresponding to the energy of SOI: eU0= �2�kF, where kF
is the Fermi wave vector. In this paper, we consider arbitrary
Rashba and Dresselhaus contributions in the 2D layers and
obtain a general expression for dc tunneling current. We
show that different relations between Rashba and Dressel-
haus contributions correspond to different shapes of current-
voltage characteristic. Special attention is focused on par-
ticular but the most typical case of both contributions with
the same order of magnitude.11,12 In this case, the structure of
the electron eigenstates should even suppress the tunneling at
any voltage. At that, the scattering at impurities becomes
very important because it restores the features of current-
voltage characteristic containing information about SOI pa-
rameters. Finally, we show that the parameters � and � can
reveal themselves in a tunneling experiment which, unlike
other spin-related experiments, requires neither magnetic
field nor polarized light.

II. CALCULATIONS

The system under study consists of 2D electron layers
separated by a potential barrier �see Fig. 1�. We consider zero
temperature, only one level of size quantization, and a not
too narrow barrier so that the electron wave functions in the
left and right layers overlap weakly. Bardeen’s tunneling
Hamiltonian4,5,13 can be written as

H = H0
L + H0

R + HT, �1�

where H0
L and H0

R are the partial Hamiltonians for the left and
right layers, respectively, and HT is the tunneling term. Tak-
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ing account of the elastic scattering and SOI in the layers,
these terms have the following form:

H0
l = �

k,�
�k

l ck�
l+ ck�

l + �
k,k�,�

Vkk�
l ck�

l+ ck��
l + HSO

l ,

HT = �
k,k�,�,��

Tkk�����ck�
L+ck���

R + ck���
R+ ck�

L � , �2�

Here, index l is used for the layer designation, l=R for the
right layer and l=L for the left layer. k here and further
throughout the paper denotes the wave vector parallel to the
layer planes, � is the spin polarization taking the values �
= �1 /2 and �k

l is the energy of an electron in the layer l
having in-plane wave vector k. It can be expressed as

�k
l = � + �0

l + �l, �3�

where �= �2k2

2m , m being the electron’s effective mass, �0
l is the

size quantization energy, and �l is the energy shift due to the
external voltage applied to the layer l. We shall also use the

value �ll� defined as �ll�= ��l−�l��+ ��0
l −�0

l��. The second
term in the Hamiltonian �Eq. �2�� Vkk�

l is the matrix element
of the scattering operator. We consider only elastic scatter-
ing. The tunneling constant Tkk���� in Eq. �2� denotes size
quantization level splitting caused by the wave function
overlap. By lowercase t, we shall denote the overlap integral
itself. Parametrically, T� t�F, where �F is the electron Fermi
energy. The term HSO

l describes the spin-orbit part of the
Hamiltonian,

ĤSO
l = �l�

k

�ky − ikx�ck�
l+ ck��

l + �ky + ikx�ck��
l+ ck,�

l

+ �l�
k

�kx − iky�ck�
l+ ck��

l + �kx + iky�ck��
l+ ck�

l . �4�

The tunneling current is given by4

I =
ie

�
T� dk Tr��	̂kk����

RL 	 − �	̂kk����
LR 	�
kk�, �5�

where 	̂kk����
ll� =ck,�

l+ ck�,��
l� , � 	 denotes the expectation value in

the quantum-mechanical sense, 
 is the Kronecker symbol,
and trace refers to the spin indices. For further calculations, it
is convenient to introduce four-dimensional vector operator

Ŝkk�
ll� , whose components are given by

�Ŝkk�
ll� ��=0,1,2,3 = Tr���	̂kk����

ll� � ,

where �� are the Pauli matrices, including identity matrix �0.
This vector operator fully determines the current. Its time
evolution is governed by

dŜkk�
ll�

dt
=

i

�
�H,Ŝkk�

ll� � . �6�

In the standard way of reasoning,14 Eq. �6� turns into

�Ŝkk�
ll� − Ŝkk�

�0�ll��w =
i

�
�H,Ŝkk�

ll� � . �7�

Here, Ŝ
kk�
�0�ll� represents the stationary solution of Eq. �6� with-

out interaction �i.e., tunneling and scattering by impurities�
and w−1 is the time of adiabatic turn-on of the interaction.

Ŝ
kk�
�0�ll� has the diagonal form

Ŝkk�
�0�ll� = Ŝk

�0�l
kk�
ll�. �8�

Here and further, we avoid duplications of the indices, i.e.,
use l instead of ll and k instead of kk. The calculations per-
formed in a way similar to Ref. 14 bring us to the following

system of equations with respect to Ŝk
ll�:

0 = ��ll� + i�w�Ŝk
ll� + T�Ŝk

l� − Ŝk
l � + M�k�Ŝk

ll�

− �
k�


 Akk�
l Ŝk

ll� − Bkk�
ll� Ŝk�

ll�

�� − � − �ll� + i�w
+

Bkk�
ll� Ŝk

ll� − Akk�
l� Ŝk�

ll�

� − �� − �ll� + i�w
� ,

�9�

i�w�Ŝk
�0�l − Ŝk

l � = T�Ŝk
l�l − Ŝk

ll�� + M�k�Ŝk
l

+ �
k�

2i�wAkk�
l �Ŝk

l − Ŝk�
l� �

��� − ��2 + ��w�2 , �10�

where M is a known matrix, depending on k and parameters
of SOI. Here, the quadratic forms of the impurities potential
matrix elements are

Akk�
l � Vk�k

l 2,

Bkk�
ll� � Vk�k

l Vkk�
l� . �11�

As Eqs. �9� and �10� comprise system of linear integral

equations, Akk�
l and Bkk�

ll� enter Eq. �5� linearly and can be
themselves averaged over a spatial distribution of the impu-
rities. We assume a short range potential of impurities and

introduce A��Akk�
l 	 and B��Bkk�

ll� 	 averaged over their spa-

tial distribution. Here, we took �Al	= �Al�	 for brevity and
omitted the index l. �As for B, the index is omitted because

Bkk�
ll� =Bkk�

l�l .� According to Eq. �11�, A denotes inverse elec-
tron’s scattering time,

eU

E

FIG. 1. Energy diagram of two 2D electron layers.
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1

�
=

2�

�
��Vkk�

2	 =
2�

�
�A , �12�

where � is the 2D density of states. We note that the aver-
aged correlators A and B have different parametrical depen-
dences on the tunneling transparency t,

B

A
� t2 � T2. �13�

This result holds both for noncorrelated and strongly corre-
lated arrangements of the impurities. Unlike Ref. 10 and ac-
cording to Eq. �13�, we conclude that the correlator B has to
be neglected in the calculation of the current within the order
of T2. In the method used here, this result appears quite natu-
rally; however, it can be similarly traced in the diagrammatic
technique used in Ref. 10. For the same reason, the tunneling
term is to be dropped from Eq. �10�. By means of Fourier
transformation on energy variable, the system of Eqs. �9� and
�10� can be reduced to the system of linear algebraic equa-

tions. Finally, Ŝk
ll� can be expressed as a function of Ŝk

�0�l.
Finally, the current �Eq. �5�� is expressed through �	̂k�

�0�R	 and
�	̂k�

�0�L	. For the considered case of zero temperature,

�	k�
�0�l	 =

1

2W
��F

l + �l − � − ��� ,

where W is the lateral area of the layers,

�� = � �l�kx − iky� − �l�ikx − ky� .

Without loss of generality, we consider the case of iden-
tical layers and external voltage applied, as shown in Fig. 1,

�0
R = �0

L,

�L = −
eU

2
, �R = +

eU

2
,

�RL = − �LR = eU .

We obtain the following expression for the current:

I =
ie

2��
T2��

0

2� �
0

�

��L + �R�Tr�	�
�0�R − 	�

�0�L�d�d� ,

�14�

where

�l =
Cl��Cl�2 − 2bk2 sin 2� − gk2�

�f + 2d sin 2��2k4 − 2�Cl�2�c + 2a sin 2��k2 + �Cl�4 ,

Cl�U� = �l + i
�

�
,

a = �L�L + �R�R,

b = ��L + �R���L + �R� ,

c = ��L�2 + ��R�2 + ��L�2 + ��R�2,

d = �L�L − �R�R,

f = ��L�2 − ��R�2 + ��L�2 − ��R�2,

g = ��L + �R�2 + ��L + �R�2. �15�

Parameters a–g are various combinations of the Rashba and
Dresselhaus parameters. Both types of SOI are known to be
small in real structures so that �kF��F and �kF��F. We
also use the assumptions:

�F�

� �1 and eU��F. This allows us
to reduce Eq. �14� to

I =
ie2

2��
T2�WU�

0

2�

��L��F� + �R��F��d� . �16�

The integral over � in Eq. �16� can be calculated analytically
by means of a complex variable integration. The result for
arbitrary �l and �l is not given here for it is rather cumber-
some. Instead, we will discuss most important limit cases
and plot a few examples for the arbitrary case.

III. RESULTS AND DISCUSSION

The general expression of Eq. �16� can be simplified in a
few particular cases. It appears that the tunneling conduc-
tance can exhibit qualitatively different behaviors depending
on the relation between Rashba and Dresselhaus contribu-
tions. We shall start from the case when SOI is completely
absent, then consider situations when one type of SOI, say,
Rashba mechanism, dominates, and, finally, turn to the case
when both Rashba and Dresselhaus contributions are present
and have comparable strengths. The analytical results for
each of these cases are illustrated with conductance vs volt-
age characteristics for the following parameters taken to re-
semble typical GaAs structures: �F=10 meV and �lkF
=0.6 meV. The plots shown in Figs. 2�a�–2�c� and 5 were
calculated for negligibly small scattering �still not strictly
zero to avoid delta peaks in the plots�. The plots presented in
Figs. 2�d� and 6 were calculated with electron’s scattering
time being of the order of picosecond. This was proven to be
quite achievable in real structures prepared for tunneling
experiments.7

FIG. 2. �Color online� Tunneling conductance. �a� �F=10 meV,
�=�=0, �=2�10−11 s; �b� same as �a�, but �kF=0.6 meV; �c�
same as �b�, but �=�; �d� same as �c�, but �=2�10−12 s.
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In the absence of SOI, the tunneling conductance has a
Lorentz-type dependence centered at zero voltage.4,6 The
width of the peak corresponds to the electron’s scattering
time �. As will be shown below, the same behavior is ex-
pected when the parameters of SOI are equal for both layers.
In this case, the tunneling current does not possess any foot-
prints of SOI. However, if any of the SOI parameters in the
one 2D layer differs from that in the other layer, they imme-
diately affect the dependence of the tunneling conductance
on voltage. Moreover, it appears that the particular shape of
this dependence is determined not merely by the difference
in one SOI parameter �say, Rashba term �L��R� but also by
the absolute values of both Rashba and Dresselhaus param-
eters even if one of them remains equal for both layers �in
our example, �L=�R�. Therefore, theoretically, it becomes
possible to determine the magnitude and, particulary, the re-
lation between both types of SOI from a plain tunneling
experiment whenever one manages to obtain electron layers
with different values of either type of SOI. The difference in
Dresselhaus contributions can be achieved by using different
materials for the layers. While this at first seems to be ques-
tionable from the technological point of view, the idea of
using a solid solution with varied composition does not seem
that exotic. Obviously, the difference in Rashba terms seems
to be much easier to achieve. The Rashba mechanism origi-
nates from the structure inversion asymmetry caused by the
builtin electrical field. Thus, if the electric fields are not
equal in the two layers, the Rashba parameters �L and �R

will be different also. A most vivid manifestation of SOI in
the tunneling conductance is expected if these parameters are
made of the same magnitude but opposite signs. This case
corresponds to the electric field directed normally to the
layer planes and in opposite directions in the left and right
layers. Hypothetically, this will be the case if a charged plane
is placed in the middle of the barrier. Such a plane can be
created by a delta layer of ionized impurities.9,10 The experi-
mental realization of this has some uncertainty as such a
layer might significantly affect the tunneling barrier. Never-
theless, the doping regions positioned at both outer sides of
the system rather than in the barrier can also produce the
electrical field having opposite directions for both layers.

Now, we shall turn to the consideration of each of the
different possible cases and obtain the analytical expressions
for the tunneling current. In each case, the behavior of the
conductivity is explained, considering the structure of the
electron eigenstates in the layers and with account of the
conservation of energy, in-plane momentum, and spin polar-
ization �if accounted for�. In fact, with no accounting of the
scattering, the results can be obtained in a simpler way, by
means of Fermi’s golden rule �FGR�. This gives an opportu-
nity to verify our general result in the limit of infinite scat-
tering time by comparison with those obtained via FGR cal-
culation. Such a comparison is shown below for the case of
equal magnitudes of Rashba and Dresselhaus terms.

A. No spin-orbit interaction

In the absence of SOI ��R=�L=0, �R=�L=0� the energy
spectrum for each of the layers forms a paraboloid,

El�kl� = �0 +
�2�kl�2

2m
�

eU

2
. �17�

The tunneling requires energy and momentum conservation
simultaneously,

ER = EL,

kR = kL. �18�

Both conditions are satisfied only at U=0 so that a nonzero
external voltage does not produce any current despite the fact
that it produces empty states in one layer aligned to the filled
states in the other layer �Fig. 1�. The momentum conserva-
tion restriction in Eq. �18� is weakened if the electrons scat-
ter at the impurities. Accordingly, one should expect a non-
zero tunneling current within a finite voltage range in the
vicinity of zero. For the considered case, the general formula
�Eq. �16�� is simplified radically as all the parameters �Eq.
�15�� reduce to zero. Finally, we get the well-known result,4

I = 2e2T2�WU

1

�

�eU�2 + 
�

�
�2 . �19�

The conductance defined as G�U�= I /U has a Lorentz-shaped
peak at U=0 turning into a delta function at �→�. This case
is shown in Fig. 2�a�.

B. Spin-orbit interaction of Rashba type

The spin-orbit interaction gives qualitatively new option
for the dc conductance to be finite at nonzero voltage. SOI
splits the spectra into two subbands. Now, an electron from
the first subband of the left layer can tunnel to a state in a
second subband of the right layer. Let us consider a particu-
lar case when only Rashba type of SOI interaction exists in
the system, its magnitude being the same in both layers, i.e.,
�R= �L�� and �R=�L��=0. In this case, the spectra
splits into two paraboloidlike subbands “inserted” into each
other. Figure 3 shows their cross sections for both layers;
arrows show spin orientation. By applying a certain external
voltage U0=

2�kF

e , the layers can be shifted on the energy
scale in such a way that the cross section of the “outer”
subband of the right layer coincides with the “inner” subband

-8 -4 0 4 8

-8

-4

0

4

8

kx

k y

-8 -4 0 4 8

-8

-4

0

4

8

kx
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a. b.

E1 E2=E1

FIG. 3. �Color online� Cross section of electron energy spectra
in the left �a� and right �b� layers for the cases �L=−�R and �L

=�R=0.
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of the left layer �see solid circles in Fig. 3�. At that, both
conditions �Eq. �18�� are satisfied. However, if the spin is
taken into account, the interlayer transition can still remain
forbidden. It happens if the appropriate spinor eigenstates
involved in the transition are orthogonal. This very case oc-
curs if �R=�L. Consequently, the conductance behavior re-
mains the same as that without SOI. In contrast, if the
Rashba terms are of opposite signs, i.e., �R=−�L the spin
orientations in the outer subband of the right layer and the
inner subband of the left layer are the same, and tunneling is
allowed at a finite voltage but forbidden at U=0. This situa-
tion, pointed out in Refs. 9 and 10, should reveal itself in
sharp maxima of the conductance at U= �U0, as shown in
Fig. 2�b�. From this dependence, the value of � can be im-
mediately extracted from the position of the peak. Evaluating
Eq. �15� for this case and, further, expression �16�, we obtain
the following result for the current:

I =

2e2T2W�U
�

�
�
2 + e2U2 + 
�

�
�2�

��eU − 
�2 + 
�

�
�2���eU + 
�2 + 
�

�
�2� , �20�

where 
=2�kF. The result is in agreement with that derived
in Ref. 10, taken for an uncorrelated spatial arrangement of
the impurities. As we have already noted, the interlayer cor-
relator B should be neglected because parametrically it has
higher order of tunneling overlap integral t than the intra-
layer correlator A �Eq. �13��. Therefore, we conclude that the
result �Eq. �20�� is valid for an arbitrary degree of correlation
in the spatial distribution of the impurities in the system. It is
worth noting that the opposite case when only the Dressel-
haus type of SOI exists in the system leads to the same
results. However, it is less practical to study the case of the
different Dresselhaus parameters in the layers because this
type of SOI originates from the crystallographic asymmetry
and, therefore, cannot be varied if the structure composition
is fixed. For this case to be realized, one needs to make the
two layers of different materials.

C. Both Rashba and Dresselhaus contributions

The presence of the Dresselhaus term in addition to the
Rashba interaction can further modify the tunneling conduc-
tance in a nontrivial way. A special case occurs if the mag-
nitude of the Dresselhaus term is comparable to that of the
Rashba term. We shall always assume the Dresselhaus con-
tribution to be the same in both layers: �L=�R��. Let us
add the Dresselhaus contribution to the previously discussed
case so that �L=−�R�� and �=�. The corresponding en-
ergy spectra and spin orientations are shown in Fig. 4. Note
that while the spin orientations in the initial and final states
are orthogonal for any transition between the layers, the
spinor eigenstates are not, so that the transitions are allowed
whenever the momentum and energy conservation require-
ment �Eq. �18�� is fulfilled. It can also be clearly seen from
Fig. 4 that the condition �Eq. �18��, meaning overlap of the
cross sections �a� and �b�, occurs only at a few points. This is
unlike the previously discussed case where the overlapping

occurred within the whole circular cross section shown by
solid lines in Fig. 3. One should naturally expect the conduc-
tance for the case presently discussed to be substantially
lower. Using Eq. �16�, we arrive at a rather cumbersome
expression for the current,

I = eT2W�U� G−�G−
2 − 
2�

�F−�
4 + F−�
−

G+�G+
2 − 
2�

�F+�
4 + F+�
� , �21�

where

G� = eU � i
�

�
,

F� = G�
2 �G�

2 − 2
2� .

Alternatively, for the case of no interaction with impurities, a
precise formula for the transition rate between the layers can
be obtained by means of Fermi’s golden rule. We obtained
the following expression for the current:

I =
2�eT2W

��2 
�K +
8m�2eU

�2 −�K −
8m�2eU

�2 � ,

�22�

where

K = 2
2 − e2U2 +
16m2�4

�4 .

Comparing the results obtained from Eqs. �21� and �22� is an
additional test for the correctness of Eq. �21�. Both depen-
dencies are presented in Fig. 5 and show a good match. The
same dependence of conductance on voltage is shown in Fig.
2�c�. As can be clearly seen in the figure, the conductance is
indeed substantially suppressed in the whole voltage range.
This is qualitatively different from all previously mentioned
cases. Furthermore, the role of the scattering at impurities
appears to be different as well. The previously considered
cases were characterized by the resonance behavior of the
conductance. The scattering broadened the resonances into
Lorentz-shaped peaks with the characteristic width 

=� / �e��. On the contrary, for the last case, the weakening of
momentum conservation due to the scattering increases the
tunneling conductance and restores the manifestation of SOI
in its dependence on voltage.

To understand such an unusual role of the scattering, let
us again consider the overlap of the spectra cross sections in
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a. b.

FIG. 4. �Color online� Cross section of electron energy spectra
in the left �a� and right �b� layers for the case �R=−�L=�.
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Figs. 4�a� and 4�b�. Note that the scattering weakens the
requirement of momentum conservation. To account for that,
one should add a certain thickness to the circles shown in the
figure. This thickness is proportional to �−1. Consequently,
the overlap of the cross sections now having “thick” lines
occurs at a larger number of points, providing increased tun-
neling current. Figure 2�d� shows this dependence for a re-
alistic scattering time �=2�10−12 s.

In general, for arbitrary � and �, the dependence of con-
ductance on voltage can exhibit various complicated shapes,
with a number of maxima being very sensitive to the relation
between Rashba and Dresselhaus contributions. The origin of
such sensitivity is the interference of the angular dependen-
cies of the spinor eigenstates in the layers. A few examples
of such interference are shown in Figs. 6�a�–6�c�. All the
dependencies shown were calculated for the scattering time
�=2�10−12 s. Figure 6�a� summarizes the results for all pre-
viously discussed cases of SOI parameters, i.e., no SOI
�curve 1�, the case �R=−�L, �=0 �curve 2�, and �R=−�L
=� �curve 3�. Following the magnitude of �, all the reaso-
nances are broadenered compared to that shown in Fig. 2.
Figure 6�b� �curve 2� demonstrates the conductance calcu-
lated for the case �L=− 1

2�R=�, and Fig. 6�c� �curve 2� for
the case �L= 1

2�R=�. Curve 1 corresponding to the case of
no SOI is also shown in all the figures for reference. Despite
the scattering, all the patterns shown in Fig. 6 remain very
distinctive. That means that, in principle, the relation be-
tween the Rashba and Dresselhaus contributions to SOI can
be extracted merely from the I-V curve measured in a proper
tunneling experiment.

IV. SUMMARY

As we have shown, in the system of two 2D electron
layers separated by a potential barrier, SOI can reveal itself
in the tunneling current. The difference in spin structure of
eigenstates in the layers results in a sort of interference and
affects the tunneling rate. Consequently, the dependence of

tunneling conductance on voltage appears to be very sensi-
tive to the parameters of SOI. Thus, we propose a way to
extract the parameters of SOI and, in particular, the relation
between Rashba and Dresselhaus contributions in the tunnel-
ing experiment. We emphasize that unlike many other spin-
related experiments, the manifestation of SOI studied in this
paper should be observed without external magnetic field.
Our calculations show that the interference picture may be
well resolved for GaAs samples with the scattering times
down to �10−12 s; in some special cases the scattering even
restores the traces of SOI otherwise not seen due to destruc-
tive interference.
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FIG. 5. �Color online� Tunneling conductance calculated for the
case �R=−�L=� and very weak scattering compared to the precise
result obtained through Fermi’s golden rule calculation.

FIG. 6. �Color online� Tunneling conductance calculated for
various parameters of SOI.
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